MATH 4035 Homework 6

Andrea Bourque

September 2020

1 Problem 9.13

If V is any normed vector space, define $N: V \to \mathbb{R}$ by $N(\mathbf{x}) = ||\mathbf{x}||$. Prove that N is continuous.

Proof. Let $\mathbf{y} \in V$. Let $\varepsilon > 0$. By the triangle inequality, $||\mathbf{x}|| = ||\mathbf{x} - \mathbf{y} + \mathbf{y}|| \le ||\mathbf{x} - \mathbf{y}|| + ||\mathbf{y}||$. Similarly $||\mathbf{y}|| \le ||\mathbf{x} - \mathbf{y}|| + ||\mathbf{x}||$. Thus both $||\mathbf{x}|| - ||\mathbf{y}||$ and $||\mathbf{y}|| - ||\mathbf{x}||$, the larger of which is $|||\mathbf{x}|| - ||\mathbf{y}||$, are less than or equal to $||\mathbf{x} - \mathbf{y}||$. Thus for $||\mathbf{x} - \mathbf{y}|| < \varepsilon$, $|N(\mathbf{x}) - N(\mathbf{y})| = |||\mathbf{x}|| - ||\mathbf{y}|| | \le ||\mathbf{x} - \mathbf{y}|| < \varepsilon$. Thus N is continuous.

2 Problem 9.16

Suppose $f : \mathbb{E}^2 \to \mathbb{R}$ has the property that for each fixed value $x_2 = b$ the function $g_b(x_1) = f(x_1, b)$ is a continuous function of x_1 . Suppose also that for each fixed value $x_1 = a$ the function $h_a(x_2) = f(a, x_2)$ is a continuous function of x_2 . Does it follow that $f(x_1, x_2)$ is continuous?

Proof. It does not follow. Take for example $f(x_1, x_2) = \frac{x_1 x_2}{x_1^2 + x_2^2}$ for $(x_1, x_2) \neq (0, 0)$, and f(0, 0) = 0. For $b \neq 0$, we have $g_b(x_1) = \frac{bx_1}{x_1^2 + b^2}$, which is continuous since $x_1^2 + b^2 \neq 0$ for all $x_1 \in \mathbb{R}$. For b = 0, $g_b(x_1) = 0$, which is also continuous. Similarly, for $a \neq 0$, $h_a(x_2) = \frac{ax_2}{a^2 + x_2^2}$ is continuous, and for a = 0, $h_a(x_2) = 0$ is continuous. However, along the line $x_1 = x_2$, we have $f(x_1, x_2) = \frac{x_1^2}{x_1^2 + x_1^2} = \frac{1}{2}$, so that along this line $f(x_1, x_2)$ tends to $\frac{1}{2}$ at (0, 0), which is not equal to f(0, 0).

Therefore f is not continuous, even though each of the axis sections are. \Box

3 Problem 9.28

Let $\mathbf{f}: D \to \mathbb{E}^m$ be continuous on its domain $D \subseteq \mathbb{E}^n$, and suppose $\mathbf{g}: \mathbf{f}(D) \to \mathbb{E}^p$ is continuous on $\mathbf{f}(D)$. Prove that $\mathbf{g} \circ \mathbf{f}$ is continuous on D.

Proof. Let $U \subseteq \mathbb{E}^p$ be open. Then $(\mathbf{g} \circ \mathbf{f})^{-1}(U) = \mathbf{f}^{-1}(\mathbf{g}^{-1}(U))$. Since \mathbf{g} is continuous, $\mathbf{g}^{-1}(U)$ is an open subset of \mathbb{E}^m by Theorem 9.2.4. Since \mathbf{f} is also continuous, $\mathbf{f}^{-1}(\mathbf{g}^{-1}(U))$ is an open subset of \mathbb{E}^n , again by Theorem 9.2.4. Thus $\mathbf{g} \circ \mathbf{f}$ is continuous by Theorem 9.2.4.