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1 Problem 8.45

a) Prove that every connected subset S ⊆ E1 is an interval.

Proof. Let a, b ∈ S with a ≤ b. Let c ∈ (a, b). Suppose c /∈ S. Then S ⊆
(−∞, c) ∪ (c,∞). Since a ∈ S ∩ (−∞, c) and b ∈ S ∩ (c,∞), it follows that
(−∞, c) and (c,∞) separate S, a contradiction. Thus c ∈ S, so that S is an
interval.

b) Prove that every interval I is a connected subset of E1.

Proof. Suppose I is disconnected with I ⊆ A ∪ B for disjoint open sets A,B.
Let a ∈ A∩ I. Suppose without loss of generality that there is a point b ∈ B∩ I
with a < b. (Otherwise, we could let a ∈ B ∩ I and b ∈ A ∩ I.) Thus [a, b] ⊆ I.
Since a ∈ A and b ∈ B, we have that A and B separate [a, b]. Let C = [a, b]∩A,
D = [a, b] ∩ B. C is bounded above by b, so let c = supC. Since a ∈ C and C
is bounded above by b, c ∈ [a, b]. Then c ∈ C or c ∈ D, but not both, since C
and D are disjoint.

Suppose c ∈ C. Then c ∈ A, which is open, so we can find an r > 0 such
that (c− r, c+ r) ⊆ A. For instance, c+ r

2 ∈ A. However, c+ r
2 > c = supC, so

c+ r
2 /∈ C. Then c+ r

2 /∈ [a, b]. Since c ∈ [a, b], this means that b < c+ r
2 . But

c ≤ b, so b ∈ [c, c+ r
2 ) ⊆ (c− r, c+ r) ⊆ A, a contradiction.

Thus suppose c ∈ D. Then c ∈ B, which is open, so we can find an r > 0
such that (c− r, c+ r) ⊆ B. Then c− r

2 ∈ B. c− r
2 is less than c, so it cannot

be an upper bound for C. That is, there is some s ∈ C with c − r
2 ≤ s. Then

s ∈ [c− r
2 , c] ⊆ (c− r, c+ r) ⊆ B, which is a contradiction.

Therefore, the assumption that I is disconnected must be false; I is con-
nected.
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2 Problem 8.47

Prove that S1 = {x ∈ E2 | ||x|| = 1} is a connected set.

Proof. Let f, g be functions defined on the interval [−1, 1], such that f(x) =√
1− x2 and g(x) = −

√
1− x2. For x = (x, y) ∈ Gf , we have y =

√
1− x2, so

x2 + y2 = ||x||2 = 1. Since the norm is positive definite, this implies ||x|| = 1,
so x ∈ S1. One similarly shows that x ∈ Gg implies x ∈ S1. Now suppose
x = (x, y) ∈ S1. Then ||x|| = 1 implies that x2 + y2 = 1, or y2 = 1− x2. This
equation splits into the two solutions y =

√
1− x2 and y = −

√
1− x2. Thus

S1 = Gf ∪ Gg. Since f, g are continuous, Theorem 8.4.2 implies that Gf and
Gg are connected. Furthermore, Gf ∩ Gg = {(−1, 0), (1, 0)}, so Theorem 8.4.3
implies that Gf ∪Gg = S1 is connected.
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3 Problem 8.54

Let f(x) = sin π
x if x > 0, and f(0) = 0. Prove that the graph Gf is a connected

subset of E2.

Proof. Suppose Gf can be separated by disjoint open sets A,B. Suppose with-
out loss of generality that (0, 0) ∈ A. Since A is open, there is an open ball
Br((0, 0)) ⊆ A for r > 0. By the Archimedean property, we can find n ∈ N
such that 1

r < n, or 1
n < r. Thus ( 1

n , 0) ∈ Br((0, 0)), so ( 1
n , 0) ∈ A. Since

f( 1
n ) = sinnπ = 0, ( 1

n , 0) ∈ Gf . However, f is continuous on (0, 1], so by
Theorem 8.4.2, Gf\{(0, 0)} is connected, and thus cannot be separated. Since
( 1
n , 0) ∈ A ∩ Gf\{(0, 0)}, it follows that Gf\{(0, 0)} ⊆ A. But (0, 0) ∈ A, so
Gf ⊆ A, a contradiction. Thus Gf is connected.
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