MATH 4035 Homework 2

Andrea Bourque

September 2020

1 Problem 8.20

Let \mathcal{O} denote an arbitrary open subset of \mathbb{E}^n . Prove that \mathcal{O} is the union of a family of open balls.

Proof. Let $\mathbf{x} \in \mathcal{O}$. Since \mathcal{O} is open, there exists some open ball $B_{r_{\mathbf{x}}}(\mathbf{x}) \subseteq \mathcal{O}$. It follows that $\bigcup_{\mathbf{x}\in\mathcal{O}} B_{r_{\mathbf{x}}}(\mathbf{x}) \subseteq \mathcal{O}$. However, since any $\mathbf{x} \in \mathcal{O}$ is contained in some ball $B_{r_{\mathbf{x}}}(\mathbf{x})$, it is then contained in the union $\bigcup_{\mathbf{x}\in\mathcal{O}} B_{r_{\mathbf{x}}}(\mathbf{x})$. Thus $\mathcal{O} \subseteq \bigcup_{\mathbf{x}\in\mathcal{O}} B_{r_{\mathbf{x}}}(\mathbf{x})$. It follows that \mathcal{O} is the union of open balls $\bigcup_{\mathbf{x}\in\mathcal{O}} B_{r_{\mathbf{x}}}(\mathbf{x})$.

2 Problem 8.26

Define the interior

$$S^{\circ} = \{ \mathbf{x} \in S \mid \exists r > 0 \text{ such that } B_r(\mathbf{x}) \subseteq S \}.$$

Prove that $S \subset \mathbb{E}^n$ is an open set if and only if $S = S^{\circ}$.

Proof. First suppose S is open. By virtue of set definition of S° , we have $S^{\circ} \subseteq S$. Now, let $\mathbf{x} \in S$. Since S is open, there is an open ball $B_r(\mathbf{x}) \subseteq S$. It follows that $\mathbf{x} \in S^{\circ}$, so that $S \subseteq S^{\circ}$. Thus $S = S^{\circ}$.

Now suppose $S = S^{\circ}$. Thus if $\mathbf{x} \in S$, then $\mathbf{x} \in S^{\circ}$. That is, there is an r > 0 such that $B_r(\mathbf{x}) \subseteq S$. This implies that S is open. \Box

3 Problem 8.28

Define \overline{S} to be the intersection of all closed sets that contain S. Prove that \overline{S} is a closed set and that $\overline{S} = S \cup C$, where C is the set of all cluster points of S.

Proof. By Theorem 8.2.4, since \overline{S} is an intersection of closed sets, it must also be closed.

Now we claim that $S \cup C$ is closed, as follows. In particular, suppose towards contradiction that $S \cup C$ is not closed, so that $\mathbb{E}^n - (S \cup C)$ is not open. Then there exists $\mathbf{p} \in \mathbb{E}^n - (S \cup C)$ such that all open balls around \mathbf{p} intersect $S \cup C$. This is the same as saying that \mathbf{p} is a cluster point of $S \cup C$, since we can form a sequence by taking a family of open balls, such as $B_{\frac{1}{n}}(\mathbf{p})$, and choose points in $S \cup C$ such that the sequence will necessarily converge to \mathbf{p} . Since \mathbf{p} was chosen outside of $S \cup C$, the elements of the sequence are never equal to \mathbf{p} , so \mathbf{p} is indeed a cluster point.

Now, since \mathbf{p} was chosen outside of C, \mathbf{p} cannot be a cluster point of S. This means we can choose an open ball $B_r(\mathbf{p})$ which does not intersect S, but it has to intersect $S \cup C$. Thus $B_r(\mathbf{p})$ intersects C; say $\mathbf{c} \in B_r(\mathbf{p}) \cap C$. Since $B_r(\mathbf{p})$ is open, and \mathbf{c} is a cluster point of S, there is an open ball $B_s(\mathbf{c}) \subseteq B_r(\mathbf{p})$ which contains a point of S. But if $B_s(\mathbf{c})$ contains a point of S, then so must $B_r(\mathbf{p})$, which is a contradiction. Therefore, $S \cup C$ is closed, and so $\overline{S} \subseteq S \cup C$, since $S \cup C$ is a closed set containing S.

Since \overline{S} is an intersection of sets which contain $S, S \subseteq \overline{S}$. Now consider a point $\mathbf{c} \in C$, and consider an arbitrary closed set D which contains S. $\mathbf{c} \in C$ means that there is some sequence in $S \setminus \{\mathbf{c}\}$ which converges to \mathbf{c} . Since D contains S, it follows that this sequence is also a sequence of $D \setminus \{\mathbf{c}\}$; that is to say \mathbf{c} is a cluster point of D. Thus by Theorem 8.2.3, $\mathbf{c} \in D$, since D is closed. \mathbf{c} is an arbitrary element of C, so we have that $C \subseteq D$. Thus $S \cup C \subseteq D$. Taking the intersection of this result over all closed sets D containing S gives $S \cup C \subseteq \overline{S}$. Thus, together with the result of the preceding paragraph, we have $\overline{S} = S \cup C$.