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1 Problem 8.9

Show that x(j) → x in the sense of the norm of En if and only if the sequence

x
(j)
l → xl for each l = 1, ..., n.

Proof. First suppose that x(j) → x in the sense of the norm of En. Let ε > 0.
Then there exists N ∈ N such that for all m > N , ||x(m) − x|| < ε. But

|x(m)
l −xl| ≤

√
|x(m)

1 − x1|2 + ... + |x(m)
n − xn|2 = ||x(m)−x||, so it follows that

each sequence x
(j)
l → xl.

Now suppose that each sequence x
(j)
l → xl. Let ε > 0. For each l =

1, ..., n, let Nl ∈ N be such that for all m > Nl, |x(m)
l − xl| <

ε√
n

. Take

N = max(N1, ..., Nn). Thus for all m > N , |x(m)
l − xl| <

ε√
n

holds for

each l = 1, ..., n. Thus ||x(m) − x|| =

√
|x(m)

1 − x1|2 + ... + |x(m)
n − xn|2 <√

ε2

n
+ ... +

ε2

n
= ε. Thus x(j) → x.
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2 Problem 8.11

a) Prove that every convergent sequence in En is bounded.

Proof. Suppose x(j) → x. Fix some ε > 0. Then there exists N ∈ N such that
for all m > N , ||x(m) − x|| < ε. Thus ||x(m)|| ≤ ||x(m) − x|| + ||x|| < ε + ||x||.
Over all k < N , we may take M = max (ε,max (||x(k) − x||)), so that ||x(j)|| ≤
M + ||x||. Thus x(j) is bounded.

b) Give an example of a bounded sequence in E2 that is not convergent.

Proof. We may take x(j) = ((−1)j ,−(−1)j). For all j, ||x(j)|| =
√

2, yet there
is no limit as the sequence oscillates between (−1, 1) and (1,−1).

c) Prove that every bounded sequence in En has a convergent subsequence.

Proof. Take x(j) to be a bounded sequence in En; say ||x(j)|| ≤ M . Then

for each l = 1, ..., n, |x(j)
l | ≤ ||x(j)|| ≤ M . Thus x(j) ∈ [−M,M ]n, a cube of

length 2M . Let x(n1) = x(1). By splitting each interval at the midpoint, we
can subdivide this cube into 2n cubes of length M . One of these cubes must
contain ∞-many terms of the sequence; if all of them contained only finitely
many terms, then there would be finitely many terms in the sequence. Thus
choose any cube which contains a subsequence of x(j). Since there are ∞-many
terms in this cube, we can choose n2 > n1 such that x(n2) is in this smaller
cube. We can repeat the process, dividing the M length cube into 2n cubes
of length M

2 , and choosing one such cube that contains ∞-many terms of the

sequence. It follows that if i, j > k, then x(ni) and x(nj) are contained in a cube

of length 2M
2k

, so that ||x(ni)−x(nj)|| ≤ 2M
√
n

2k
→ 0 as k →∞. In particular, for

any ε > 0, we can choose K ∈ N such that for k > K, ||x(ni)−x(nj)|| < ε. Thus
the subsequence x(ni) is Cauchy, and hence converges since En is complete.
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3 Problem 8.14 (a)-(c)

a) Suppose a vector space V is equipped with an inner product 〈·, ·〉, and suppose
we define a corresponding norm by ||x||2 = 〈x,x〉. Prove the Parallelogram Law:

||x + y||2 + ||x− y||2 = 2||x||2 + 2||y||2.

Proof. By linearity and symmetry of the inner product, we have ||x + y||2 =
〈x + y,x + y〉 = 〈x,x + y〉 + 〈y,x + y〉 = 〈x,x〉 + 〈x,y〉 + 〈y,x〉 + 〈y,y〉 =
〈x,x〉+ 2〈x,y〉+ 〈y,y〉. Similarly, we have ||x−y||2 = 〈x,x〉− 2〈x,y〉+ 〈y,y〉.
Thus upon adding the two equations we obtain the desired result.

b) Prove that the taxicab norm does not correspond as in part (a) above to
any inner product on R2.

Proof. Suppose that the taxicab norm did correspond to an inner product. Then
the result of part (a) would hold true for any x,y ∈ R2. However, choosing,
for example, x = (1, 0) and y = (0, 1), we have ||x|| = |1| + |0| = 1 = ||y||,
||x + y|| = |1|+ |1| = 2 = ||x− y||, whence we have 22 + 22 6= 2 · 12 + 2 · 12.

c) Under the hypotheses of part (a) above, prove the identity

〈x,y〉 =
1

4
(||x + y||2 − ||x− y||2).

Proof. Using the work under part (a), subtracting the two equations instead of
adding gives ||x + y||2 − ||x− y||2 = 4〈x,y〉, which is clearly equivalent to the
claim.
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