MATH 4035 Homework 1

Andrea Bourque

August 2020

1 Problem 8.9

Show that $\mathbf{x}^{(j)} \to \mathbf{x}$ in the sense of the norm of \mathbb{E}^n if and only if the sequence $x_l^{(j)} \to x_l$ for each l = 1, ..., n.

Proof. First suppose that $\mathbf{x}^{(j)} \to \mathbf{x}$ in the sense of the norm of \mathbb{E}^n . Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all m > N, $||\mathbf{x}^{(m)} - \mathbf{x}|| < \varepsilon$. But $|x_l^{(m)} - x_l| \le \sqrt{|x_1^{(m)} - x_1|^2 + \ldots + |x_n^{(m)} - x_n|^2} = ||\mathbf{x}^{(m)} - \mathbf{x}||$, so it follows that each sequence $x_l^{(j)} \to x_l$.

Now suppose that each sequence $x_l^{(j)} \to x_l$. Let $\varepsilon > 0$. For each l = 1, ..., n, let $N_l \in \mathbb{N}$ be such that for all $m > N_l$, $|x_l^{(m)} - x_l| < \frac{\varepsilon}{\sqrt{n}}$. Take $N = \max(N_1, ..., N_n)$. Thus for all m > N, $|x_l^{(m)} - x_l| < \frac{\varepsilon}{\sqrt{n}}$ holds for each l = 1, ..., n. Thus $||\mathbf{x}^{(m)} - \mathbf{x}|| = \sqrt{|x_1^{(m)} - x_1|^2 + ... + |x_n^{(m)} - x_n|^2} < \sqrt{\frac{\varepsilon^2}{n} + ... + \frac{\varepsilon^2}{n}} = \varepsilon$. Thus $\mathbf{x}^{(j)} \to \mathbf{x}$.

2 Problem 8.11

a) Prove that every convergent sequence in \mathbb{E}^n is bounded.

Proof. Suppose $\mathbf{x}^{(j)} \to \mathbf{x}$. Fix some $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all m > N, $||\mathbf{x}^{(m)} - \mathbf{x}|| < \varepsilon$. Thus $||\mathbf{x}^{(m)}|| \le ||\mathbf{x}^{(m)} - \mathbf{x}|| + ||\mathbf{x}|| < \varepsilon + ||\mathbf{x}||$. Over all k < N, we may take $M = \max(\varepsilon, \max(||\mathbf{x}^{(k)} - \mathbf{x}||))$, so that $||\mathbf{x}^{(j)}|| \le M + ||\mathbf{x}||$. Thus $\mathbf{x}^{(j)}$ is bounded.

b) Give an example of a bounded sequence in \mathbb{E}^2 that is not convergent.

Proof. We may take $\mathbf{x}^{(j)} = ((-1)^j, -(-1)^j)$. For all $j, ||\mathbf{x}^{(j)}|| = \sqrt{2}$, yet there is no limit as the sequence oscillates between (-1, 1) and (1, -1).

c) Prove that every bounded sequence in \mathbb{E}^n has a convergent subsequence.

Proof. Take $\mathbf{x}^{(j)}$ to be a bounded sequence in \mathbb{E}^n ; say $||\mathbf{x}^{(j)}|| \leq M$. Then for each $l = 1, ..., n, |x_l^{(j)}| \leq ||\mathbf{x}^{(j)}|| \leq M$. Thus $\mathbf{x}^{(j)} \in [-M, M]^n$, a cube of length 2*M*. Let $\mathbf{x}^{(n_1)} = \mathbf{x}^{(1)}$. By splitting each interval at the midpoint, we can subdivide this cube into 2^n cubes of length *M*. One of these cubes must contain ∞ -many terms of the sequence; if all of them contained only finitely many terms, then there would be finitely many terms in the sequence. Thus choose any cube which contains a subsequence of $\mathbf{x}^{(j)}$. Since there are ∞ -many terms in this cube, we can choose $n_2 > n_1$ such that $\mathbf{x}^{(n_2)}$ is in this smaller cube. We can repeat the process, dividing the *M* length cube into 2^n cubes of length $\frac{M}{2}$, and choosing one such cube that contains ∞ -many terms of the sequence. It follows that if i, j > k, then $\mathbf{x}^{(n_i)}$ and $\mathbf{x}^{(n_j)}$ are contained in a cube of length $\frac{2M}{2^k}$, so that $||\mathbf{x}^{(n_i)} - \mathbf{x}^{(n_j)}|| \leq \frac{2M\sqrt{n}}{2^k} \to 0$ as $k \to \infty$. In particular, for any $\varepsilon > 0$, we can choose $K \in \mathbb{N}$ such that for k > K, $||\mathbf{x}^{(n_i)} - \mathbf{x}^{(n_j)}|| < \varepsilon$. Thus the subsequence $\mathbf{x}^{(n_i)}$ is Cauchy, and hence converges since \mathbb{E}^n is complete. \Box

3 Problem 8.14 (a)-(c)

a) Suppose a vector space V is equipped with an inner product $\langle \cdot, \cdot \rangle$, and suppose we define a corresponding norm by $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle$. Prove the Parallelogram Law:

$$||\mathbf{x} + \mathbf{y}||^2 + ||\mathbf{x} - \mathbf{y}||^2 = 2||\mathbf{x}||^2 + 2||\mathbf{y}||^2.$$

Proof. By linearity and symmetry of the inner product, we have $||\mathbf{x} + \mathbf{y}||^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$. Similarly, we have $||\mathbf{x} - \mathbf{y}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle - 2 \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$. Thus upon adding the two equations we obtain the desired result. \Box

b) Prove that the taxicab norm does not correspond as in part (a) above to any inner product on \mathbb{R}^2 .

Proof. Suppose that the taxicab norm did correspond to an inner product. Then the result of part (a) would hold true for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$. However, choosing, for example, $\mathbf{x} = (1,0)$ and $\mathbf{y} = (0,1)$, we have $||\mathbf{x}|| = |1| + |0| = 1 = ||\mathbf{y}||$, $||\mathbf{x} + \mathbf{y}|| = |1| + |1| = 2 = ||\mathbf{x} - \mathbf{y}||$, whence we have $2^2 + 2^2 \neq 2 \cdot 1^2 + 2 \cdot 1^2$. \Box

c) Under the hypotheses of part (a) above, prove the identity

$$\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{4} (||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2).$$

Proof. Using the work under part (a), subtracting the two equations instead of adding gives $||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2 = 4\langle \mathbf{x}, \mathbf{y} \rangle$, which is clearly equivalent to the claim.